УДК 621.771.01

Сатонин А. В. Переходченко В. А. Настоящая С. С. Матвеев И. А.

РАЗВИТИЕ ИНЖЕНЕРНЫХ МЕТОДОВ РАСЧЕТА ЭНЕРГОСИЛОВЫХ ПАРАМЕТРОВ ПРОЦЕССА ГОРЯЧЕЙ СИММЕТРИЧНОЙ ПРОКАТКИ ОТНОСИТЕЛЬНО ТОНКИХ ПОЛОС

Дальнейшее развитие технологий листопрокатного производства неразрывно связано с необходимостью расширения и уточнения соответствующих методов их расчета. Отмеченное в полной мере касается и наименее трудоемких инженерных математических моделей, достаточно широко используемых для предварительного анализа, а также в качестве математического обеспечения различного рода быстродействующих систем автоматизированного проектирования и автоматического регулирования [1].

В настоящее время одной из наиболее широко используемых применительно к расчету энергосиловых параметров процессов прокатки относительно тонких полос, характеризующихся наличием соотношения общей протяженности очага деформации L и средней толщины h_{cp} в диапазоне $L/h_{cp} > 3$, является методика А. И. Целикова, предполагающая определение текущих по длине зон отставания p_{xom} и опережения p_{xon} значений нормальных контактных напряжений как [1, 2]:

$$p_{xom} = (2K_c / \delta_f)[(\xi_0 \delta_f - 1)(h_0 / h_x)^{\delta_f} + 1];$$
 (1)

$$p_{xon} = (2K_c / \delta_f)[(\xi_1 \delta_f + 1)(h_x / h_1)^{\delta_f} - 1], \tag{2}$$

где $2K_c$ — среднеинтегральное по длине и высоте очага деформации удвоенное значение сопротивления сдвигу прокатываемого металла, определяемое в зависимости от степени, скорости и температуры деформации [3];

 $\delta_f = 2fL/\Delta h$ — коэффициент, характеризующий влияние граничных условий в очаге деформации;

f – коэффициент, характеризующий согласно закону Амонтона-Кулона [1, 2, 4] величину касательных контактных напряжений τ_x в зависимости от соответствующих значений нормальных контактных напряжений p_x как $\tau_x = p_x f$;

 $h_0, h_1, \Delta h = h_0 - h_1$ — исходное и конечное значения толщины, а также величина абсолютного обжатия прокатываемой полосы;

 $\xi_0 = 1 - \sigma_0 / 2K_c$, $\xi_1 = 1 - \sigma_1 / 2K_c$ – коэффициенты, характеризующие влияние напряжений заднего σ_0 и переднего σ_1 натяжений.

Относительная простота аналитических зависимостей (1) и (2), графическая интерпретация которых представлена на рис. 1, предопределила возможность достаточно широкого использования полученных на их основе методов расчета интегральных показателей энергосиловых параметров, особенно при холодной прокатке. В то же время использование данных решений применительно к условиям реализации процесса горячей прокатки относительно тонких полос, характеризующихся повышенными уровнями коэффициентов внешнего контактного трения f, является весьма проблематичным. В частности, общеизвестным является положение о том, что касательные контактные напряжения в очаге деформации

 $au_x = p_x f$ не должны превышать соответствующие значения сопротивления сдвигу прокатываемого металла, то есть $au_x \leq K_c$ [4]. Исходя из изложенного выше для текущих значений коэффициента напряженного состояния $n_{\sigma_x} = p_x / 2K_c$, можно записать $p_x f \leq K_c$, откуда:

$$p_x / 2K_c = n_{\sigma_x} \le 1/(2f).$$
 (3)

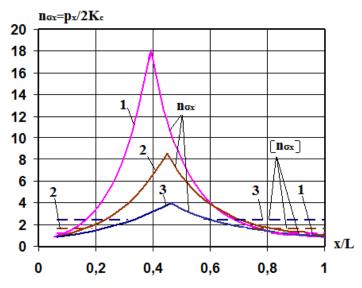


Рис. 1. Расчетные согласно уравнениям (1) и (2) [1, 2] распределения текущих по длине очага деформации значений коэффициента напряженного состояния металла n_{σ_x} при горячей симметричной прокатке относительно тонких полос ($h_0=3,0\,$ мм; $h_1=2,1\,$ мм; $R=350\,$ мм; 1-f=0,4; 2-f=0,3; 3-f=0,2)

Из анализа представленных расчетных распределений (см. рис. 1) следует, что при использовании закона Амонтона-Кулона условие (3) не выполняется на значительном участке очага деформации, при этом с увеличением коэффициента трения f и геометрического соотношения L/h_{cp} относительная протяженность данного участка возрастает, что свидетельствует о предпочтительности применения в этом случае закона Зибеля в виде $\tau_x = 2K_c\mu$ [4]. К завышению результатов расчета процессов горячей прокатки приводит и использование инженерного варианта условия пластичности [1, 2], пренебрегающего влиянием касательных компонент девиатора напряжений τ_{xy} .

Целью работы является уточнение граничных условий и инженерных методов расчета энергосиловых параметров при горячей симметричной прокатке относительно тонких полос.

Осуществив по аналогии с методиками работ [1, 2] разбиение интегрального очага деформации (рис. 2, а) на зону отставания и зону опережения протяженностями, соответственно L_{om} и L_{on} , рассмотрим условие статического равновесия выделенного в рамках зоны отставания элементарного объема металла (рис. 2, б) при проектировании всех действующих сил на горизонтальную ось X:

$$\sigma_x h_x - (\sigma_x + d\sigma_x)(h_x + dh_x) + 2p_{xot} dx \sin \alpha_x / \cos \alpha_x - 2\tau_x dx \cos \alpha_x / \cos \alpha_x = 0, \tag{4}$$

где p_x, σ_x, τ_x – текущие значения нормальных контактных, нормальных осевых и касательных контактных напряжений, при этом за положительные значения σ_x приняты напряжения сжатия, а τ_x – напряжения векторно сонаправленные с перемещением прокатываемого металла;

 h_x , α_x — текущие значения толщины прокатываемой полосы и углов контакта, количественные оценки которых при аппроксимации контактных дуг хордами равны $h_x = h_1 + \Delta hx/L$ и $\alpha_x = \alpha = arctg(0.5\Delta h/L)$.

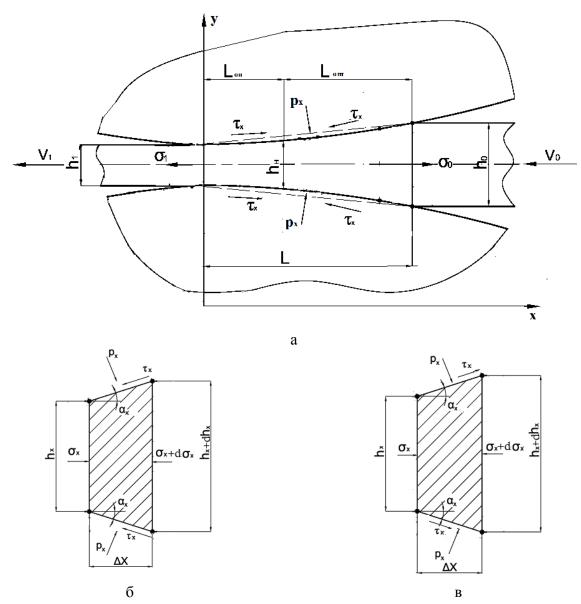


Рис. 2. Расчетные схемы интегрального очага деформации (а), а также выделенных в зоне отставания (б) и в зоне опережения (в) элементарных объемов металла применительно к инженерному математическому моделированию энергосиловых параметров процесса горячей симметричной прокатки относительно тонких полос

Приняв во внимание рекомендуемый закон внешнего контактного трения $\tau_x = 2K_c\mu$ и пренебрегая бесконечными малыми второго порядка $d\sigma_x dh_x \approx 0$, а также с учетом очевидных чисто геометрических соотношений $2dx \sin\alpha_x/\cos\alpha_x = 2dxtq\alpha = dh_x$ и $dx = dh_x/(2tq\alpha)$, дифференциальное уравнение (4) может быть представлено в виде:

$$-\sigma_x dh_x - d\sigma_x h_x + p_{XOT} dh_x - 2K_c 2\mu dh_x / (2tq\alpha) = 0,$$
(5)

где μ – коэффициенты пластического трения, значения которых приняты постоянными по всей длине очага деформации.

Исходя из полной формы записи условия пластичности [4]:

$$(p_x - \sigma_x)^2 + 4\tau_{xy}^2 = 4K_c^2, (6)$$

и учитывая результаты двухмерного анализа напряженного состояния металла [3, 5], согласно которым касательные компоненты девиатора напряжений τ_{xy} по высоте сечений очага деформации изменяются по закону близкому к линейному, а их среднеинтегральная оценка соответствует выражению вида:

$$\tau_{xvc} = \tau_x / 2 = 2K_c \mu / 2,\tag{7}$$

величина нормальных осевых напряжений σ_x может быть определена как:

$$\sigma_{x} = p_{xom} - \sqrt{4K_{c}^{2} - 4\tau_{xy}^{2}} = p_{xom} - \sqrt{4K_{c}^{2} - 4K_{c}^{2}\mu^{2}} = p_{xom} - 2K_{c}\sqrt{1 - \mu^{2}} = p_{xom} - 2K_{c}a_{k},$$
 (8)

где $a_k = \sqrt{1-\mu^2}$ – вспомогательная переменная, используемая для упрощения формы записи.

С учетом подстановки зависимости (8) в условие (5), получим следующее дифференциальное уравнение:

$$2K_c a_k dh_x - dp_{xom} h_x - 2K_c \delta_\mu dh_x = 0, (9)$$

где $\delta_{\mu} = 2\mu L/\Delta h$ — еще одна вспомогательная переменная, характеризующая по аналогии с δ_f уравнений (1) и (2) влияние граничных условий в очаге деформации процесса горячей прокатки.

Преобразовав уравнение (9) к виду:

$$2K_c(a_k - \delta_u)(dh_x/h_x) = dp_{xom}, \tag{10}$$

в результате интегрирования получим:

$$2K_c(a_k - \delta_{\mu}) \ln h_x = p_{xom} + C_{om}, \tag{11}$$

где $C_{
m ot}$ – постоянная интегрирования, определяемая для зоны отставания исходя из известных значений нормальных контактных напряжений в сечении на входе в очаг деформации $p_{xom}|_{h_x=h_0}=2K_ca_k-\sigma_0$ (см. рис. 2, а):

$$C_{\text{OT}} = 2K_c(a_k - \delta_{\mu}) \ln h_0 - 2K_c a_k + \sigma_0.$$
 (12)

Подставив (12) в уравнение (11) в окончательном виде по отношению к текущим по длине зоны отставания значениям нормальных контактных напряжений p_{xot} , получим:

$$p_{XOT} = 2K_c(\delta_{\mu} - a_k) \ln(h_0 / h_x) + 2K_c a_k - \sigma_0.$$
(13)

Аналогично и применительно к зоне опережения очага деформации (см. рис. 2, а, в):

$$\sigma_x h_x - (\sigma_x + d\sigma_x)(h_x + dh_x) + 2p_{xon} dx t q \alpha_x + 2\tau_x dx = 0, \tag{14}$$

откуда в полном соответствии с решениями (5)–(11) имеем:

$$2K_c(a_k + \delta_u) \ln h_x = p_{xon} + C_{on}, \tag{15}$$

где Con — постоянная интегрирования, определяемая для зоны опережения, исходя из известных значений нормальных контактных напряжений в сечении на выходе из очага деформации $p_{xon}|_{h_x=h_1}=2K_ca_k-\sigma_1$ (см. рис. 2, а):

$$C_{\text{OII}} = 2K_c(a_k + \delta_u) \ln h_1 - 2K_c a_k + \sigma_1. \tag{16}$$

Обобщив выражения (15) и (16) в окончательном виде по отношению к зоне опережения, получим:

$$p_{XO\Pi} = 2K_c(\delta_{\mu} + a_k)\ln(h_x/h_1) + 2K_ca_k - \sigma_1.$$
 (17)

Исходя из условия равенства нормальных контактных напряжений для зоны отставания и зоны опережения в нейтральном сечении очага деформации $p_{xom_{\left|h_{x}=h_{H}\right|}}=p_{xon_{\left|h_{x}=h_{H}\right|}}$ запишем:

$$2K_c(\delta_{\mu} - a_k)\ln(h_0/h_{\mu}) + 2K_ca_k - \sigma_0 = 2K_c(\delta_{\mu} + a_k)\ln(h_{\mu}/h_1) + 2K_ca_k - \sigma_1, \tag{18}$$

откуда толщина полосы в данном сечении h_{H} и протяженность зоны опережения Lon (см. рис. 2, а) могут быть определены как:

$$h_{H} = \exp\{ [\delta_{\mu} \ln(h_{0}h_{H}) - a_{k} \ln(h_{0}/h_{1}) + \sigma_{1}/2K_{c} - \sigma_{0}/2K_{c}]/(2\delta_{\mu}) \} =$$

$$= \sqrt{h_{0}h_{1}} \exp\{ a_{k} \ln(h_{1}/h_{0}) + \sigma_{1}/2K_{c} - \sigma_{0}/2K_{c})/(2\delta_{\mu}) \};$$
(19)

$$L_{on} = (h_{H} - h_{1})L/\Delta h. \tag{20}$$

В результате интегрирования расчетных согласно (13) и (17) распределений нормальных контактных напряжений p_{xom} , p_{xon} по длине всего очага деформации:

$$n_{\sigma} = (1/L) \left[\int_{0}^{L_{on}} p_{xon} dx + \int_{L_{on}}^{L} p_{xon} dx \right], \tag{21}$$

может быть определена и среднеинтегральная оценка коэффициента напряженного состояния металла $n_{\sigma}=p_{c}/2K_{c}$, знание которой необходимо для расчета среднеинтегрального значения нормальных контактных напряжений p_{c} и величины силы прокатки $P=2K_{c}n_{\sigma}BL=p_{c}BL$:

$$n_{\sigma} = \frac{1}{L} \left\{ \int_{0}^{L_{on}} \left[(\delta_{\mu} + a_{k}) \ln(\frac{h_{1} + \Delta h x / L}{h_{1}}) \right] dx + \int_{0}^{L_{on}} (a_{k} - \frac{\sigma_{1}}{2K_{c}}) dx + \int_{L_{on}}^{L} \left[(\delta_{\mu} - a_{k}) \ln(\frac{h_{1} + \Delta h x / L}{h_{0}}) \right] dx + \int_{L_{on}}^{L} (a_{k} - \frac{\sigma_{0}}{2K_{c}}) dx \right\},$$
(22)

откуда с учетом замены переменных $(h_1 + \Delta hx/L)/h_1 = U_1$, $(h_1 + \Delta hx/L)/h_0 = U_2$, пределов интегрирования и собственно самого интегрирования с последующими математическими преобразованиями в окончательном виде имеем:

$$n_{\sigma} = \frac{1}{L} \left\{ \int_{1}^{h_{H}/h_{1}} \frac{h_{1}L}{\Delta h} [(a_{k} + \delta_{\mu}) \ln U_{1}] dU_{1} + (a_{k} - \frac{\sigma_{1}}{2K_{c}}) L_{on} + \frac{1}{h_{H}/h_{0}} \frac{h_{0}L}{\Delta h} [(a_{k} - \delta_{\mu}) \ln U_{2}] dU_{2} + (a_{k} - \frac{\sigma_{0}}{2K_{c}}) (L - L_{on}) =$$

$$= (\delta_{\mu} + a_{k}) \left[\frac{h_{H}}{\Delta h} \ln \frac{h_{H}}{h_{1}} - (\frac{h_{H} - h_{1}}{\Delta h}) \right] + (a_{k} - \frac{\sigma_{1}}{2K_{c}}) (\frac{h_{H} - h_{1}}{\Delta h}) +$$

$$+ (\delta_{\mu} - a_{k}) \left[\frac{h_{0} - h_{H}}{\Delta h} - \frac{h_{H}}{\Delta h} \ln \frac{h_{0}}{h_{H}} \right] + (a_{k} - \frac{\sigma_{0}}{2K_{c}}) (\frac{h_{0} - h_{H}}{\Delta h}).$$

$$(23)$$

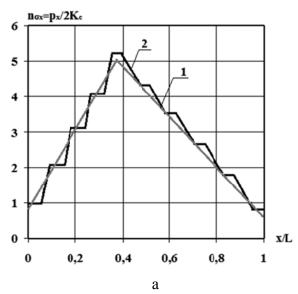
Величина суммарного момента прокатки, учитывая противонаправленность касательных контактных напряжений τ_{χ} в зонах отставания и опережения (см. рис. 2) в этом случае соответствует:

$$M_{\Sigma} = 2 \times 2K_{c} \mu RB(L - 2L_{on}) = 2 \times 2K_{c} \mu RBL[1 - 2(h_{H} - h_{1})/\Delta h], \tag{24}$$

где R и B – радиус рабочих валков и ширина прокатываемой полосы.

В целом представленные зависимости в сочетании с расчетом среднеинтегрального значения удвоенного сопротивления сдвигу $2K_c$, учетом упругого сплющивания рабочих валков и наличие зоны упругого восстановления [1–3] составили полный алгоритм по инженерному математическому моделированию энергосиловых параметров процесса горячей прокатки относительно тонких полос с учетом более реального характера распределений граничных условий очага деформации.

В качестве примера результатов численной реализации зависимостей (13), (17), (19) и (23) на рис. З представлены расчетные распределения текущих n_{ox} и среднеинтегральных n_{ox} по длине очага деформации значений коэффициента напряженного состояния металла, а также результаты их сопоставления с аналогичными распределениями, полученными при тех же исходных данных на основе метода полей линий скольжения [3, 5]. Из анализа представленных результатов следует, что качественно расчетные распределения, полученные на основе предложенной методики и на основе метода полей линий скольжения полностью соответствуют друг другу. Количественно среднеинтегральные оценки n_{ox} , предоставляемые зависимостями (19) и (23) несколько превышают аналогичные оценки, полученные автором работы [5], что обусловлено отличием среднеинтегральных по высоте очага деформации значений касательных компонент девиатора напряжений и аналогичных значений, имеющих место непосредственно на контактных поверхностях. Вместе с тем степень указанного несоответствия в относительном измерении не превысила 5 %, что подтверждает правомерность использования рассмотренных в рамках данной работы теоретических решений.



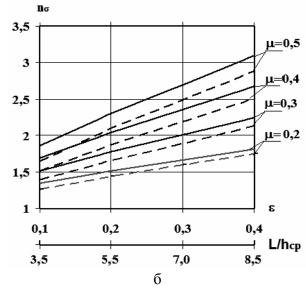


Рис. 3. Расчетные, полученные согласно рассмотренной методике (1) и на основе метода полей линий скольжения (2) [3, 5], распределения текущих n_{ox} (а) и среднеинтегральных n_{ox} по длине очага деформации значений коэффициента напряженного состояния металла при горячей прокатке относительно тонких полос

ВЫВОДЫ

На основе уточнения исходных предпосылок по условию пластичности и аналитическому описанию коэффициента внешнего контактного трения получили развитие инженерные методы расчета энергосиловых параметров процесса горячей симметричной прокатки относительно тонких полос, при этом степень их несоответствия по отношению к более строгим двухмерным методам анализа в относительном измерении не превысила 5 %.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Целиков А. И. Теория продольной прокатки / А. И. Целиков, Г. С. Никитин, С. Е. Рокотян. М. : Металлургия, 1980.-320~c.
- 2. Василев Я. Д. Теорія поздовжньої прокатки : підручник / Я. Д. Василев, О. А. Мінаєв. Донецьк : УНІТЕХ, $2009.-488\ c.$
- 3. Федоринов В. А. Математическое моделирование напряжений, деформаций и основных показателей качества при прокатке относительно широких листов и полос: монография / В. А. Федоринов, А. В. Сатонин, Э. П. Грибков. Краматорск: ДГМА, 2010. 156 с.
- 4. Лаптев А. М. Построение диаграмм для определения коэффициента трения в формуле Леванова по методу осадки кольца / А. М. Лаптев, Я. Ю. Ткаченко, В. И. Жабин // Обработка материалов давлением : сб. науч. трудов. Краматорск : ДГМА, 2011. №3 (28). С. 129—135.
- 5. Потапкин В. Ф. Метод полей линий скольжения в теории прокатки широких полос : монография / В. Ф. Потапкин. Краматорск : ДГМА, 2005. 316 с.

Сатонин А. В. – д-р техн. наук, проф. кафедры АММ ДГМА;

Настоящая С. С. – аспирант кафедры АММ ДГМА;

Переходченко В. А. – нач. бюро ПАО «НКМЗ»;

Матвеев И. А. – студент ДГМА.

ДГМА – Донбасская государственная машиностроительная академия, г. Краматорск.

ПАО «НКМЗ» – Публичное акционерное общество «Новокраматорский машиностроительный завод», г. Краматорск.

E-mail: amm@dgma.donetsk.ua